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Learning 2000 Finite Automata

Regular Languages are Worth Inferring

• Many practical problems admit a regular modeling making the use
of ”more powerful” recursive models unnecessary.

• Regular Languages can account for local, short-term constraints
(like N-Grams) as well as for the more global or long-term
constraints that often underlay in real aplications.

• Any language can be approximated (e.g. in a stochastic sense)
with arbritary precision by a Regular Language.

• Properties of Regular Languages are relatively well known; this
makes the development of inference methods easier.

• Simple and efficient parsing methods exist for strings belonging to
Regular Languages.
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Learning 2000 Finite Automata: ECGI

Error Correcting Grammatical Inference (ECGI)
[Rulot & Vidal, 87]

• ECGI is a grammatical inference heuristic: it was explicitly designed
to capture the relevant regularities of concatenation and length
exhibited by the substructures of unidimensional patterns.

• ECGI relies on error-correcting parsing both to build the grammars to
be inferred and to deal with the errors (irregularities) of the patterns with
respect to the learned grammars.

• ECGI builds up a stochastic regular grammar through a single
incremental pass over the (positive) training set.
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Learning 2000 Finite Automata: ECGI

Stochastic ECGI

To achieve useful performance the inferred grammars must be complemented
with statistical information:

• Frequency of utilization of each of the inferred rules.

• Frequency of insertion deletion & substitution of each symbol.

Probabilities of both the error and non-error rules can be directly estimated
from these frequencies, allowing stochastic error-correcting parsing to be used
with new unknown samples.

If there are several classes with one grammar per class the parsing probabilities
can be used for maximum likelihood classification.
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Learning 2000 Finite Automata: ECGI

Applications of ECGI

Speech Recognition:

• Speaker-Independent Spanish Digit Recognition [Rulot et al., 89]

• Language Modeling [Prieto & Vidal, 92]

Planar Shape Recognition (OCR):

• Mixed Size Font-independent printed digit recognition [Vidal et al., 92]

• Writer-independent Handwritten digit recognition [Vidal et al., 93]

Music processing:

• Learning Music Styles for automatic composition [Cruz & Vidal, 97]

• Music Style recognition [Cruz & Vidal, 98]

Banded chromosome recognition: [Vidal & Castro, 97]
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Learning 2000 Finite Automata: k-TSI

k-Testable Languages in the Strict Sense (k-TS)
[Garcı́a & Vidal, 90]

A k-TS Language is defined by a four-tuple Zk = (Σ, I, F, T ) where:

• Σ is the alphabet ;
• I and F are sets of initial and final substrings of length smaller than k;
• T is a set of forbidden substrings of length k.

A language associated with Zk is defined as [Zalcstein,72]:

L(Zk) = IΣ∗ ∩ Σ∗F − Σ∗TΣ∗

L(Zk) consists of strings that begin with substrings in I, end with substrings in F
and do not contain any substring in T .

Example:

Z2 = ({a, b, c, d, e}, {a, d}, {c, e}, {a, b, c, d, e}2 − {ab, db, bb, bc, be})
L(Z2) = {abc, abe, dbc, dbe, abbc, abbe, dbbc, dbbe, abbbc, abbbe, dbbbc, dbbbe, . . . } =

= (a+ d) b+(c+ e)

. Stochastic K-TS languages are equivalent to N-GRAM’s with N=K [Segarra,93].
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Learning 2000 Finite Automata: k-TSI

k-TS Inference Algorithm (K-TSI)
[Garcı́a & Vidal, 90]

Input : k : N; S : Set of strings //positive training sentences
Output : Ak=(Σ, Q, δ, qI, QF ) //Inferred Automaton
AuxVar : x, y : Strings; q′, q′′, q : States //represented as strings over Σ

Σ = δ = ∅; qI := λ; Q = {qI}; QF := ∅ //λ is the empty string
∀x ∈ S do q′ := qI ;

for i := 1 . . . |x| do
if ∃q′′ | (q′, xi, q′′) ∈ δ then q = q′′ //parse using current structure
else //create new alphabet entry, state,

Σ := Σ ∪ {xi} //and/or transition, as required
y := q′xi; if |y| > k − 1 then y := y2...|y| endif ; q := y

Q := Q ∪ {q}; δ := δ ∪ {(q′, xi, q)}
if i = |x| then QF := QF ∪ {q} endif

endif
q′ := q

endfor
end∀
Ak := (Σ, Q, δ, qI, QF )
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Learning 2000 Finite Automata: k-TSI

Illustration of k-TS Inference

Successive automata produced by k-TSI from S = {aa, aba, abba, abbba} and k = 3.
Thick lines represent states and transitions consolidated in previous steps, while thin lines are used for states and/or
transitions that needed to be created in each step:
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L3 = ab∗a

Automata yield by k-TSI from S = {aa, aba, abba, abbba} for k = 1, k = 2 and k = 4:
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L1 = (a+ b)∗ L2 = a(a+ b)∗a+ a L4 = S
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Learning 2000 Finite Automata: k-TSI

Properties of k-TS Languages and the k-TSI Algorithm
[Garcı́a & Vidal90]

Let Lk(S) the k-TS language learned by k-TSI
for a given sample S:

• Lk+1(S) ⊆ Lk(S)

• Lm(S) = S, m = maxx∈S|x|

• ∀S′ ⊂ S Lk(S′) ⊆ Lk(S)

• Lk(S) is the smallest k-TSL that contains S

S+

2L
L3

m=L

4L

1L = Σ*

• For any fixed k the class of k-TS languages can be identified in the limit using
the k-TSI algorithm with positive data .

• The whole class of Locally Testable Languages in the Strict Sense (LTS) can
be identified in the limit using k-TSI with positive data for increasing values of
k and using negative data to control the growth of k.

The LTS class is the union of all k-TS languages for k = 1, 2, 3 . . .
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Learning 2000 Finite Automata: MGGI

Limitations of k-TS languages

S = {abc, dbe, abbc, dbbe, abbbc, dbbbe} ⊂ (ab+c) + (db+e).

Automata yield by k-TSI for 2 ≤ k ≤ 4:
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L2 = (a+ d)b+(c+ e) L3 = L2 − {dbc, abe}
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L4 = S

Inferred languages:
L2 = (a+ d)b+(c+ e) = {abc, abe, dbc, dbe, . . . , abbbbc, abbbbe, dbbbbc, dbbbbe, . . . }
L3 = L2 − {abe, dbc} = {abc, dbe, abbc, abbe, . . . , abbbbc, abbbbe, dbbbbc, dbbbbe, . . . }
L4 = S = {abc, dbe, abbc, dbbe, abbbc, dbbbe}

L2 and L3 are clear overgeneralizations, while L4 is exactly the training
sample. No language is a satisfactory approximation to the target language.
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Learning 2000 Finite Automata: MGGI

Limitations of k-TS languages (cont.)

Some Families of Languages

Other Classes of Languages

TDR

Context-Free

Regular

k-T

(k-1)-Revk-Rdef
k-TS

k-Def

K-TS languages are among the most restricted regular languages.

Even if we restrict ourselves to the class of Regular Languages (RL), many other possibilities
exist that are significantly more powerful than k-TS/N-Grams, in the sense that they can help
modeling more global or long-term constraints.
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Learning 2000 Finite Automata: MGGI

Morphisme-based Techiques: Morphisme Theorem

Any Regular Language can be Represented as a 2-TS language:

Morphisme Theorem [Medvedev,64]:

Let Σ be a finite alphabet and L ⊆ Σ∗ a regular language. There exist then
a finite alphabet Σ′, a letter-to-letter morphisme h : Σ′∗ → Σ∗, and a Local
Language l over Σ′ such that L = h(l).

Example:
Let L = {1, 111, 11111, 1111111, . . . } be the set of strings of 1’s of odd length.
L is (obviously) emphnot local; however it can be obtained by applying an
alphabetic morphism h to the Local Language l = l(Z):

• Z = (Σ, I, F, T, ) = ({a, b}, {a}, {a}, {aa, bb})
• l(Z) = {a, aba, ababa, abababa, . . . }
• h : {a, b}∗ → {1}∗ : h(a) = h(b) = 1
• h(l(Z)) = {1, 111, 11111, 1111111, . . . }

A letter-to-letter morphisme between two alphabets Σ′ and Σ is a function h : Σ′
∗ → Σ∗

such that: h(xy) = h(x)h(y) ∀x, y ∈ Σ′; h(Σ′) = Σ ; and h(λ) = λ.
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Learning 2000 Finite Automata: MGGI

Learning General Regular Grammars from Positive Data: MGGI
[Garcı́a et al.,87]

Morphic Generator Grammatical Inference (MGGI):

S

h

2-TSI

lL

S’

(S’)

MGGI

g The lack of known target structure is
compensated with a-priori knowledge about
(perhaps long-term) syntactic constraints that
are desired to be captured by the inferred
model. This knowledge is represented through
appropriate word-renaming functions (g and h).

Property [Garcı́a et al.,87]: Let S ⊂ Σ∗ be
a finite set of sentences and L = h(l(g(S)))
the language obtained from S by MGGI. If
h(g(S)) = S, then S ⊆ L ⊆ l(S).

*Σ
l(S)

L
S
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Learning 2000 Finite Automata: MGGI

MGGI: Example

Let S = {abc, dbe, abbc, dbbe, abbbc, dbbbe}.

By inspection one can guess that a key syntactic feature consists of correctly matching
beginings and ends of sentences. This suggests the following renaming function:

g(S) = S′ = {abacc, dbdee, abacbacc, dbdebdee, abacbacbacc, dbdebdebdee}

Using S′ as a training set, the 2-TSI algorithm yields the automaton on the left.

To comply with the condition of the MGGI Theorem (i.e., h(g(S)) = S) the
morphisme h simply consists of droping the subindexes. By minimizing the
result, the automaton on the right is obtained:
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Learning 2000 Finite Automata: MGGI

Applications of k-TSI and MGGI

Speech Recognition:

• Speaker-Independent Spanish Digit Recognition
[Garcı́a et al., 90] [Segarra, 93]

• Language Modeling [Vidal & Llorens, 96]

Music processing:

• Learning Music Styles for automatic composition
[Cruz & Vidal, 97]

• Music Style recognition [Cruz & Vidal, 98]
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Learning 2000 Finite Automata: RPNI
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Learning 2000 Finite Automata: RPNI

The Prefix tree Acceptor

• Set of Prefixes of a language: L ⊆ Σ∗ : Pr(L) = {u ∈ Σ∗|uv ∈ L, v ∈ Σ∗}

• Prefix Tree Acceptor of a finite set S+ ∈ Σ∗ : PT (S+) = (Q,S, δ, q0, F )

Q = Pr(S+); q0 = λ; F = S+; δ(ua) = ua iff u, ua ∈ Pr(S+)

Example: S+ = {ab, aaba, baa, bbb}
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a b a

b
b b

a

b

a

a

b

aa aab aaba

ab

baa

bbbbb

ba
λPT(S  )+
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Learning 2000 Finite Automata: RPNI

Quotient Automaton or Automaton Derivative (A/π)

Let A = (Q,Σ, δ, I, F ) and let p = B1, B2, . . . Bn be a partition on Q.

Quotient Automaton : A′ = A/π = (Q′,Σ, δ′, I ′, F ′):

Q′ = π, I ′ = {Bi ∈ π | Bi∩I 6= ∅}, F ′ = {Bi ∈ π | Bi∩F 6= ∅}
Bj ∈ δ′(Bi, a) if qi ∈ Bi, qj ∈ Bj, qj ∈ δ(qi, a)

Example: S+ = {ab, aaba, baa, bbb};

A = PT (S+); π = {B1, B2, B3, B4}, I ′ = {B1}; F ′ = {B3, B4}
B1 = {λ, b, ba, bb}, B2 = {a, aa, aab}, B3 = {ab, baa, bbb}, B4 = {aaba}

a
a b a

b

b b

a

b
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b
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E. Vidal – UPV: Oct. 2000 Section 4: 18



Learning 2000 Finite Automata: RPNI

Properties of Prefix Tree Acceptor Derivatives
[Pao & Carr, 78] [Angluin,82]

Let S+ ⊂ Σ∗ be a finite sample of a language L and PT (S+) its Prefix Tree Acceptor :

1. If |π1| < |π2| (π2 is finer than π1) then L(PT (S+)/π2) ⊆ L(PT (S+)/π1)

2. If S+ is structurally complete with respect to L then ∃π : L(PT (S+)/π) = L

Based on these properties different state-merging schemes lead to different GI
methods. Two basic points of view:

• Characterizable: Choose a partition scheme that guarantees identification of a
convenient class of languages. E.g.:

– k-RI method for k-Reversible languages [Angluin,82]
– General Regular Language Inference from + and - samples (RPNI) [Oncina,92]

• Heuristic: Choose a partition scheme that leads to generalizations of S+ that
are adequate for the aplication considered. E.g.:

k-Tails [Bierman & Feldman, 72], Clustering of Tails [Miclet,80], k-Contextual [Muggleton,84]
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Learning 2000 Finite Automata: RPNI

Learning General Regular Languages from + and - Data

Given finite samples S+ ⊂ Σ∗ and S− ⊂ Σ∗, the problem of finding the
smallest Deterministic Finite Automaton (DFA) A, such that S+ ⊆ L(A)
and S− ∩ L(A) 6= ∅ is NP-HARD [Gold,78] [Angluin,78].

However we can instead try to obtain a DFA A′ which is copmatible with
S+ and S−, but without insisting that the size of A′ strictly be the smallest
possible for S+ and S−.

This idea has been followed in [Oncina,92], leading to the RPNI algorithm
which has been shown to be able to (efficiently) identify any Regular
Language in the limit using both + and − samples.

(Related approach: [Lang,92])
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Learning 2000 Finite Automata: RPNI

Learning General Regular Languages from + and - Data:
RPNI Algorithm [Oncina,92]

Algorithm RPNI (Regular Positive & Negative Inference)
Input: S+ S-
Output: A: DFA which accepts S+ and do not accept R-

Method: A:=PT(S+); (let Q(A) denote the set of states of A)
forall q in Q(A) - lambda in lexicographic order do

forall p < q in lexicographic order do
A’=merge(A,p,q)

while A’ is not deterministic do
select q’, q’’ which violate determinism
A’=merge(A’,q’q’’)

endwhile
if A’ accepts some strings from S- then A=A’

end forall p
end forall q

end RPNI

E. Vidal – UPV: Oct. 2000 Section 4: 21



Learning 2000 Finite Automata: RPNI

Properties of the RPNI Algorithm [Oncina,91]

1. Correctness: the resulting automaton A is deterministic
and S+ ⊆ L(A), S− ∩ L(A) = ∅

2. Polynomial worst-case time complexity: 0(np2 + p3)
where n =

∑
x∈S− |x|, p =

∑
x∈S+ |x| (much better linear

observed average cost)

3. Convergence:

• if S+ contains a (small) representative sample of the
unknown target language L then the resulting automaton
A is the smallest DFA for L

• using RPNI the class of Regular Languages can be
identified in the limit from complete (both + and -) data
with polynomial update complexity
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Learning 2000 Stochastic Finite Automata
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Learning 2000 Stochastic Finite Automata

Inference of Stochastic Regular Languages

• Stochastic Regular Languages can overcome Gold’s negative computational
results and can be effectively learned from only positive data; e.g. under
Wharton’s paradigm of approximate identification in the limit.

• The lack of negative data to control overgeneralization can be compensated by
statistical information gathered from the positive data.

• Stochastic languages are particularly relevant for their use in most real
applications
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Learning 2000 Stochastic Finite Automata

Learning Stochastic Regular Languages Through State Merging

• Basic idea:

Given a finite sample S, orderly try merging the states of the Stochastic Prefix
Tree Acceptor of S as long as the tails of the merged states have similar
likelihood [Oncina,93].

• Related approach:

If A is a current automaton, greedily merge those pairs of states of A which
maximize Bayesian posterior probability p(A|S) ∼ p(S|A)p(A) [Stolcke &
Omohundro,93]. The prior p(A) is supplied by hand under the assumption
that smaller and simpler models should have higher a priori probability.
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Learning 2000 Stochastic Finite Automata

Backward-Forward based techniques

• If an estimate of the appropriate number of states or non-terminals n is available,
we can obtain a locally optimal estimate of the probabilities of a fully connected n-
State Hidden Markov Model (HMM) from a sequence of training strings. Techniques
to estimate the number of states n can be derived from [Ziv & Merhav,92]

• By (optionally) pruning out zero or low probability transitions a (stochastic) finite-
state automaton can be obtained.

• A drawback of this technique is its high sensitivity to the probability
initialization required by Baum-Welch/Backward-Forward reestimation [Stolcke &
Omohundro,93]

Applications:
• Used to initialize the Inside-Outside algorithm for learning Context-Free Grammars [Lari & Young,90]

• Automata obtained by any other GI technique can be used to initialize Backward-Forward
reestimation, generally leading to an increase of performance over the basic GI technique used
[Casacuberta,90]
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